Densities of Quartic Fields with Even Galois Groups

نویسندگان

  • SIMAN WONG
  • Wen-Ching Winnie Li
چکیده

Let N(d,G,X) be the number of degree d number fields K with Galois group G and whose discriminant DK satisfies |DK | ≤ X. Under standard conjectures in diophantine geometry, we show that N(4, A4, X) X2/3+ , and that there are N3+ monic, quartic polynomials with integral coefficients of height ≤ N whose Galois groups are smaller than S4, confirming a question of Gallagher. Unconditionally we haveN(4, A4, X) X5/6+ , and that the 2-class groups of almost all Abelian cubic fields k have size D k . The proofs depend on counting integral points on elliptic fibrations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Galois Groups of Cubics and Quartics (not in Characteristic 2)

We will describe a procedure for figuring out the Galois groups of separable irreducible polynomials in degrees 3 and 4 over fields not of characteristic 2. This does not include explicit formulas for the roots, i.e., we are not going to derive the classical cubic and quartic formulas.

متن کامل

Galois Groups of Cubics and Quartics in All Characteristics

Treatments of Galois groups of cubic and quartic polynomials usually avoid fields of characteristic 2. Here we will discuss these Galois groups and allow all characteristics. Of course, to have a Galois group of a polynomial we will assume our cubic and quartic polynomials are separable, and to avoid reductions to lower degree polynomials we will assume they are irreducible as well. So our sett...

متن کامل

Tables of octic fields with a quartic subfield

We describe the computation of extended tables of degree 8 fields with a quartic subfield, using class field theory. In particular we find the minimum discriminants for all signatures and for all the possible Galois groups. We also discuss some phenomena and statistics discovered while making the tables, such as the occurrence of 11 non-isomorphic number fields having the same discriminant, or ...

متن کامل

Units in Some Parametric Families of Quartic Fields

In this article we compute fundamental units for three parametric families of number fields of degree 4 with unit rank 2 and 3 generated by polynomials with Galois group D4 and S4.

متن کامل

Ranks of Elliptic Curves with Prescribed Torsion over Number Fields

We study the structure of the Mordell–Weil group of elliptic curves over number fields of degree 2, 3, and 4. We show that if T is a group, then either the class of all elliptic curves over quadratic fields with torsion subgroup T is empty, or it contains curves of rank 0 as well as curves of positive rank. We prove a similar but slightly weaker result for cubic and quartic fields. On the other...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005